MARIE Simulator Help Needed. Must Use MARIE Simulator

MARIE Simulator Help Needed. Must Use MARIE Simulator

Project 2 MARIE Start code at bottom of document

  1. Introduction
    The objective of this project is to reinforce your understanding of computer organization, instruction set architectures, and assembly language. You will accomplish this by writing, analyzing, and debugging an assembly language program for the MARIE processor.

You must: (i) design and write an assembly language program for the MARIE processor that inputs, transforms, stores, and then outputs a sequence of characters from the set A-Z; (ii) debug and test your program by simulating it using the MARIE simulator; (iii) document your work in a short report; and (iv) submit the report file (.pdf), assembler source file (.mas), assembler listing file (.lst), and assembler executable file (.mex).

  1. The MARIE Simulator
    The MARIE simulator is provided as a zip file containing Java archives (*.jar) files, documentation, and example source files. Unzip the file to a directory for use. Do the following to become familiar with the MARIE simulator
  2. Design Specification
    You are to design, write, test, and debug a MARIE assembly language program that inputs a sequence of characters from the set A-Z (capital letters only), stores each character in memory after it is transformed by the trivial ROT13 cipher, and then, after character input completes, outputs the transformed characters.

A template source code file (Project-2_Start.mas) is provided with this assignment. Edit this file to create a program that meets the program specifications. Note that the template includes instructions to initialize some working values that your program can use. The template also defines memory locations. You may add data memory locations. The program can be designed without additional data locations, but it may be necessary to do so for your design.

For full credit, your solution must perform the functions and satisfy the requirements specified below.

a) The first instruction of the program must be placed at location (address) 0x100 (100 hexadecimal) in MARIE’s memory. This is accomplished by following the program template that is provided.

b) The constant data values (One, ChA, ChZ, ChPer, Val13, Start) should not be changed by the program. The program can load from these memory locations, but should not store to them.

c) Transformed input characters must be stored in successive memory locations beginning at location 0x200 (200 hexadecimal) as indicated in the program template. The program should store all transformed input characters before any characters are output.

d) The program should always initialize the values for Ptr in the working data memory and not rely on the values for these locations that are defined in the assembly source file. This initialization is done by the provided template file.

e) The program should work for any inputs ‘A’ through ‘Z’ and ‘.’ (a period terminates input). In the interest of keeping the program simple, the program does not need to validate inputs.

f) When transformed characters are stored and when transformed characters are output, the program must use a loop and indirect addressing to access the values in the array of words. Note that variable Ptr is initialized in the template code and should be used in the loop. You may also define a Count variable to count the number of characters, but there are also correct designs that do not require a Count variable.

g) The program should operate as follows. Input Phase:

  1. A character (A-Z or ‘.’) is input. MarieSim allows the user to input a single character that is read into the accumulator (AC) with an Input instruction.
  2. If character ‘.’ (period) is input, then the input phase ends and the output phase begins (step 5 below). (The period may be stored in memory to mark the

end of the characters or the characters can be counted to determine how many transformed characters to output during the output phase.)

  1. The character that is input is transformed using the trivial ROT13 cipher (see Section 5.1).
  2. The transformed character is stored in the next location in the block of memory beginning at location Start. (Variable Ptr must be updated and indirect memory addressing must be used.)

Output Phase:

  1. All transformed characters are output, beginning with the first character that was transformed. The ‘.’ character is not to be output. (This will require a loop using variable Ptr and indirect addressing. Note that the number of characters to output will vary and the program must know when to stop the output by relying on a ‘.’ or other special character in memory, counting the number of input characters during the input phase, or some other method.)
  2. After all characters are output, the program halts by executing the HALT


The post MARIE Simulator Help Needed. Must Use MARIE Simulator appeared first on best homeworkhelp.

"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"