Steps in Constructing the Xbar Chart
C:UsersadamDesktopmgt340_m8_l3_g2.jpg
A(3) can be found in the following table: n A(3) n A(3) 2 2.659 6 1.287 3 1.954 7 1.182 4 1.628 8 1.099 5 1.427 9 1.032
· One point outside the 3 sigma control limits
· Eight successive points on the same side of the centerline
· Six successive points that increase or decrease
· Two out of three points that are on the same side of the centerline, both at a distance exceeding 2 sigmas from the centerline
· Four out of five points that are on the same side of the centerline, four at a distance exceeding 1 sigma from the centerline f. Using an average run length (ARL) for determining process anomalies
Example: The following data consists of 20 sets of three measurements of the diameter of an engine shaft.
n
StdDev
Xbar
1
2.0000
1.9998
2.0002
0.0002
2.0000
2
1.9998
2.0003
2.0002
0.0003
2.0001
3
1.9998
2.0001
2.0005
0.0004
2.0001
4
1.9997
2.0000
2.0004
0.0004
2.0000
5
2.0003
2.0003
2.0002
0.0001
2.0003
6
2.0004
2.0003
2.0000
0.0002
2.0002
7
1.9998
1.9998
1.9998
0.0000
1.9998
8
2.0000
2.0001
2.0001
0.0001
2.0001
9
2.0005
2.0000
1.9999
0.0003
2.0001
10
1.9995
1.9998
2.0001
0.0003
1.9998
11
2.0002
1.9999
2.0001
0.0002
2.0001
12
2.0002
1.9998
2.0005
0.0004
2.0002
13
2.0000
2.0001
1.9998
0.0002
2.0000
14
2.0000
2.0002
2.0004
0.0002
2.0002
15
1.9994
2.0001
1.9996
0.0004
1.9997
16
1.9999
2.0003
1.9993
0.0005
1.9998
17
2.0002
1.9998
2.0004
0.0003
2.0001
18
2.0000
2.0001
2.0001
0.0001
2.0001
19
1.9997
1.9994
1.9998
0.0002
1.9996
20
2.0003
2.0007
1.9999
0.0004
2.0003
Sbar chart limits: SBAR = 0.0002
UCL = B(4) x SBAR = 2.568 x .0002 = 0.0005136 LCL = B(3) x SBAR = 0 x .0002 = 0.00
Xbar chart limits: XDBLBAR = 2.0000
UCL = XDBLBAR + A(3) x SBAR = 2.000+1.954 x .0002 = 2.0003908 LCL = XDBLBAR – A(3) x SBAR = 2.000-1.954 x 0002 = 1.9996092
S-Chart:
Xbar Chart:
C:UsersadamDesktopAU_MGT340_W8_G5.jpg
Xbar and R Charts (1 of 2)
Theoretical Control Limits for Xbar Charts:
C:UsersadamDesktopmgt340_m8_l4_g1.jpg
Although theoretically possible, since we do not know either the population process mean or standard deviation, these formulas cannot be used directly and both must be estimated from the process itself. First the R chart is constructed. If the R chart validates that the process variation is in statistical control, the XBAR chart is constructed.
· UCLX-bar = X-double-bar + A2 (R-bar)
· LCLX-bar = X-double-bar – A2 (R-bar)
A(2) can be found in the following table:
The post Steps in Constructing the Xbar Chart appeared first on best homeworkhelp.